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Abstract-Myocardial mechanics, perfusion and across-capillary mass transport are functionally related. 
The effects of these interacting phenomena on the performance of the left ventricle (LV) are investigated 
here. The effect of fluid balance on the diastolic and systolic intramyocardial pressures (IMP) and the 
interstitial and myocardial volumes as well as the global ventricular mechanics are of particular interest. 
The LV is approximated by a cylindrical geometry, containing blood vessels imbedded in the interstitial 
fluid and a fibrous matrix with active and passive elements. The coronary circulation is described by pressure 
dependent resistance-capacitance analog elements. Fluid and mass transport are calculated assuming an 
ideal semipermeable capillary wall and the lymphatic drainage depends linearly on the IMP. Changes in 
lymphatic flow are used to simulate edema formation, and its effects on myocardial mechanics and coronary 
flow. The empty beating and isovolumic contracting hearts are studied under constant coronary perfusion 
pressures. The model successfully predicts the corresponding changes of the coronary flow, the IMP, the 
LV pressure and the ventricular compliance. The simulated effects of a transient contractile dysfunction 

on the dynamics of fluid transport and coronary flow are in agreement with experimental data. 

INTRODUCTION 

MUSCLE mechanics, blood flow and intramural 

across-capillary fluid and mass transport are impor- 
tant interacting phenomena affecting the LV per- 

formance. As is well known, the vascular pressure is 

closely related to the IMP [I] ; muscle mechanics play 
a dominant role in flow dynamics (21 and the coronary 

pressure has important effects on myocardial mech- 

anics [3, 41. Past theoretical investigations have con- 
sidered the effects of LV mechanics on the myocardial 

flow [S-7], but do not include the effects of fluid and 
mass transport on the myocardial bed, and therefore 
cannot adequately predict the inverse effects of the 
coronary flow and perfusion pressure on the IMP and 
LV mechanics. Thus, for example, the diastolic IMP 
and the LV wall volume values are usually estimated 

input data in the LV mechanical models while, in fact, 
they depend on the coronary perfusion pressure and 
the fluid transport conditions. Similarly, coronary 
flow models depend on the IMP dynamics, which in 

turn depends on the muscle mechanics ; fluid and mass 
transport models require capillary and IMP data 
which depend on LV mechanics and the coronary 
flow. 

Accounting for the fluid transport and mass balance 
within the myocardium allows the effect of coronary 

flow on the IMP and LV mechanics to be evaluated. 
McCulloch et al. [4], for example, have studied the 
effect of coronary perfusion on the passive LV mech- 
anics and suggest that fluid transport needs be 
accounted for, since small intravascular blood volume 
changes that may occur cannot explain the large 
observed changes in LV compliance. Kresh [2] sug- 
gests that the myocardium should be considered as a 

composite material of connective tissue, contractile 

elements, vessels, all interposed by an interstitial gel- 

like matrix. 
The major goal of this paper is to extend our 

previous studies and develop an LV model that 

takes into account, simultaneously and interactively, 
the mechanics, the coronary blood flow and the fluid 
and mass transport phenomena. Particular attention 
is given here to the interaction between the calculated 
IMP in relation to the LV mechanics and coronary 
flow. The main advantage of this integrated model is 

its ability to relate the global LV performance (mech- 
anics, coronary flow and fluid and mass transport) to 
the active myocardial properties and its structure at 
given loading conditions. The model predicts the IMP 
as a function of the mechanical flow and fluid and 

mass transport conditions and describes the associ- 
ated multidirectional interactions. In addition, the 

model elucidates the pathophysiological mechanisms 
associated with disturbances in myocardial fluid bal- 
ance such as in myocardial edema. 

BASIC RELATIONSHIPS 

The physiological model 
As shown schematically in Fig. 1, the myocardium 

is a complex multi-component structure composed 
primarily of muscle fibers, which show a well defined 
spatial organization [8], and connective tissue, mainly 
collagen fibers, which connect between the muscle 
fibers. This complex matrix contains the coronary 
vessels, the interstitial fluid which fills the extra- 
vascular and extracellular space, and the lymphatic 
drainage into the venous system. The capillary walls 
are permeable to the transport of fluid and metab- 
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A blood vessel cross sectional area 
B constant 
C blood vessel capacitance 
( solute concentration 
R constant 
E constant 
F volumetric flow 
h cardiac muscle thickness 
IMP intramyocardial pressure 
J mass flux 
k 0.~2.3.~ constants 
K& constants 

4 constant 

4 capillary wall hydraulic conductivity 
L VP LV cavity pressure 
n normal unit vector 
P pressure 

2 

permeability coefhcient 
blood volumetric flow 

R blood vessel resistance 

R,; gas constant 

4, LV cavity inner radius 
S surface area 
SL sarcomere length 

Sr, minimum sarcomere length 
S’LP, passive unstrained sarcomere length 
t,T time 
T Temperature 

T, peak activation time 

T2 total activation time 
Y volume. 

Greek symbols 
sarcomere orientation angle 

; rate of strain ratio 
2 stretch ratio 

reflection coefficient 
K osmotic pressure 
d stress tensor 

00 maximal muscle stress. 

Subscripts 
a active 
blood blood 
C collagen 
f sarcomere fiber 
fib fiber 
int interstitial 
lymph lymphatic 
LV left ventricle 
max maxjmal 

P passive 
r radial direction 
s solute 
tr transmural 
w water 
wall LV wall 

axial direction 
; reference state 
0 circumferential direction. 

Superscripts 
0 reference state. 

olites. This mass transport is not only necessary for the coronary flow and the fluid and mass transport. 
sustaining the muscle activity but at the same time it Moreover, the lymphatic outflow and macro- 
functionally relates between the muscle mechanics, molecular transport play an important role in the 

interstitial fluid and tissue volume control. 

Lymph 
Muscle mechanics 

Neglecting body forces and inertial effects, the myo- 
cardial stress field can be estimated by solving the 
force balance in the LV wall given by : 

V-a=0 (11 

where u represents the stress tensor. Since the myo- 
cardium is a complex structure of active (muscle 
fibers) and passive (collagen fibers) elements imbed- 

~ 

ded in the interstitial fluid, this tensor may be ex- 

pressed by PI d = _PI+a,+a, (2) 

r” 

where P denotes the interstitial fluid pressure, i.e. the 

c - coilopen IMP; I is the unit tensor and the subscripts u and 
m - m~scla fiber p denote the active and passive stress components, 

Fro. 1. Schematic description of the myocardial structure respectively. 
and components. Equation (1) is complemented by the boundary con- 
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ditions denoting the normal force balance at the inner 
endocardial surface, 

LVP = P-(a,+a,):nn 

and at the epicardial surface 

(3) 

0 = P-(U,+tT,):M (4) 

where n is a unit outward vector normal to the endo- 
cardial and epicardial surfaces and LI/P denotes the 
LV cavity pressure. 

Although equation (1) has a simple form, it is highly 
complex due to the irregular myocardial boundaries 
and structure and the non linearity of the material 
constitutive laws. In order to solve for the three prin- 
cipal stresses and the IMP, equation (1) is usually 
supplemented by the incompressibility condition [9- 
13] and a given initial end-diastolic IMP value. This 
incompressibility condition implies that the LV wall 
volume is constant along the heart beat ; it does not, 
however, provide the actual value of this volume or 
its dependence on the LV operating conditions. 

To overcome this limitation, and consistent with 
the myocardial structure, the total LV wall volume 
is expressed here as the sum of the volumes of the 
myocardial components, i.e. 

V wall = V~ood + V,nl+ Vtib (5) 

where the blood volume, Vblaodr and the interstitial 
volume, Vi,,, each represents about 15% of the total 
LV wall volume [ 141 and the fiber volume, Vfib, occu- 

pies 70% of the total normal LV wall volume. Obvi- 
ously, the blood and interstitial volumes vary accord- 
ing to the mechanical, blood flow and fluid and mass 
transport conditions. 

Bloodflow 

Myocardial flow models are usually electrical anal- 
ogs which describe the response of the myocardial 
circulation to the mechanical parameters. Each level 
or section of the circulation is described by.a resistive 
and a capacitive element or similar electric elements. 
The values of these resistances and capacitances are 
not well known and they vary considerably with the 
transmural pressure difference, P,,, defined as the 
difference between the vascular pressure and the IMP. 

Clearly, both the blood flow and blood volume 
depend on the vascular to extravascular pressure 
difference. 

Neglecting vessel length variations and assuming 
Poiseuille’s law to apply through the coronary vas- 
cular bed, the resistance, R, in each section is inversely 
proportional to the (squared) cross section area of the 
vessel, i.e. 

R=K+. 

The capacitance, C, per unit length is defined as the 
change in cross sectional area with the change in the 
transmural pressure difference [ 151, i.e. 

a 

20 40 60 80 100 

Ptr hmb) 

FIG. 2. The relationship between the vessel cross sectional 
area A and the transmural pressure difference, P,, (repro- 

duced from ref. [16], with permission). 

dA 
C=Kcdp,, 

where K, and & are constants, set to fit the reported 
experimental resistance and capacitance values in the 
various types of vessels. The relationship between the 
vessel cross section area, A, and the transmural pres- 
sure difference is given in Fig. 2 [16]. 

Although flow predictions obtained with some 
refined models [5-7, 171 agree very well with exper- 
imental findings, the main limitation of these models 
is that they depend on given input values of the IMP, 

the L VP or the extravascular forces, which may vary 
in different physiological situations and can be, as is 
the IMP. difficult to measure. 

Mass transport 
For a simple system of a semipermeable membrane 

of the Kedem-Katchalsky [ 181 type that separates two 
fluid media which contain dilute solutions of various 
molecules, the fluid flux, J,, essentially water, across 
the membrane is given by : 

J, = L,(AP - vAn) (8) 

where L, and v denotes the hydraulic conductivity 
and the reflection coefficients, respectively. AK is the 
interstitial to capillary osmotic pressure difference and 
BP = P,,-IMP, denotes the difference between the 
capillary pressure, Pcap, and the IMP. Equation (8) 
demonstrates clearly the direct dependence of the fluid 
transport rate on the blood flow and muscle mech- 
anics since the capillary pressure and the IMP are 
both interactively determined by these two phenom- 
ena. For an ideal dilute solution the osmotic pressure 
difference is given by 

Art = R,TAc (9) 

where RG denotes the gas constant, T is the absolute 
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FIG. 3. Schematic description of the interactions between 
the LV mechanics. the coronary flow, and fluid and mass 

transport. 

temperature and AC is the solute concentration differ- 
ence. 

The solute flux, J,, is given by the sum of the con- 
vective and diffusive terms 

J = J (l-“)~c’““+c~n~)+P s w 2 
(c, -c- ) per cap I”, (10) 

where Ppr is the membrane permeability coefficient, 
and the subscripts cap and int denote the capillary 
and the interstitium, respectively. 

The mass conservation principle for the total inter- 
stitial volume, is given by : 

(11) 

where Fiymph is the lymphatic Sow. Similarly, the total 
solute mass balance is given by : 

where Scar, is the capillary wall area. Since albumin, 
the largest macromolecule in the plasma, is dominant 
in dete~injng the osmotic pressure difference, we 
consider only this species in this model. Note that 
the IMP is the driving force for the lymphatic flow. 
Moreover, under steady state conditions, the net 
transcapillary fluid flow equals the lymphatic outflow. 
Thus, equations (I 1) and (12) determine the interstitial 
fluid content and provide an additional relationship 
between the mechanical and flow parameters which 
also needs to be observed. 

THE INTEGRATED MODEL 

The basic links between muscle mechanics, cor- 
onary flow and the fluid and mass transport, are sch- 
ematically represented in Fig. 3. Basically, these inter- 

/ 

FIG. 4. Geometrical configuration and reference coordinates 
of a cylindrical LV wall. 

actions indicate that the mechanics affects the blood 
flow and the fluid and mass transport through the 
IMP and fiber stresses, but at the same time the blood 
flow and the fluid and mass transport affect the mech- 
anics by changes in the myocardial blood and inter- 
stitial fluid content. It is. therefore, evident that these 
three phenomena cannot be simply decoupled, but 
need to be considered integratively as a whole if the 
LV performance is to be uniquely determined. Clearly, 
any change in one of these three phenomena will 
eventually affect the other two and consequently the 
whole LV function. Even in the case that the muscle 
and collagen stresses are dominant in dete~ining the 
flow behavior, the flow still affects the fMP through 
the capillary pressure and the fluid and mass trans- 
port, which indirectly affect the LV mechanics. 

The current model is based on a cylindrical geo- 
metrical approximation (Fig. 4) [IO], with the LV wall 
composed of a network of muscle fibers with a chang- 
ing fiber angle dis~ibution across the wail I&], and a 
collagen matrix imbedded in the interstitial fluid. The 
collagen fibers lit in a 3-dimensional matrix, parallel 
and perpendicular to the muscle fibers on the cyl- 
indrical surfaces and as well as in the radial direction. 
The blood vessels inside this con~guration are pri- 
marily affected by the IMP. 

The combined effect of the interactions between 
myocardial mechanics, blood perfusion and mass 
exchange between the blood vessels in the myocardial 
tissue is obtained here by the simultaneous and inter- 
active solution of the basic equations that describe 
these phenomena and their relationships. Only aver- 
age values of the transmural stresses, strains and other 
variables are used here. 

Mer,hanical model 
Using the constitutive equation for the myocardial 

stresses, equation (2), and averaging these stresses 
across the LV wall (thin wall approximation), the 
myocardial force balances are given by : 
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LVP = &(crBr+rr,,-IMP); &direction (13) p = !$(O,-rra (20) 
I” 

(a,,.+ o,, -IMP) ; z-direction. 

(14) 

Here h is the wall thickness, Ri, is the radius of the 
inner cylinder, which in terms of the midwall’ radius, 
l?, is given by R,, = I- h/2 ; o(,~ and elf denote the 
average muscle stress in f3 and z directions, respec- 
tively ; ooc and ccc are the corresponding collagen aver- 
age 0 and z stress. 

The relationship accounting for the radial myo- 
cardial stresses is derived from the boundary 
conditions, equations (3) and (4) yielding the fol- 
lowing radial force balance 

LVP 
- = IMP-a,, 

2 

where a,, is the average radial stress. 
Muscle fiber stresses are composed of an active and 

a passive component. A non-symmetric activation 
waveform [ 191 is approximated by a square sinus func- 
tion. The active part of the muscle fiber stresses, ar, is 
then given by : 

af = 
(16) 

where T2 and T, denote the total and peak activation 
times, respectively. The maximum normalized iso- 
metric stress, af,max, is given by [20] : 

i 

(SL - SL,)a, 

0.55 
;1.65<SL<2.2~ 

ahax = 
i 

a,, ; 2.2 c SL < 2.4~ (17) 

I ao- 
(SL-2’4)a0 ; sL , 2,4P 

0.55 

where a0 is the maximum stress and SL, denotes the 
minimum sarcomere length required for active stress 
development. 

The passive muscle fiber stresses are given by [21] : 

where D and E are material constants and the muscle 
stretch ratio, I, is given by the ratio of the sarcomere 
length, SL, to the sarcomere length at the passive 
unstrained state, SLP,, 

SL 
a=-- 

SLP,’ 

The stress to rate of strain ratio /3 [22] is approximated 
by [ll]: 

where Lax is the maximal stretch rate. The collagen 
fiber stresses are described by the nonlinear relation- 
ship [13] 

6, = D,[eE@-‘)- 11. (21) 

The wall-averaged stress components of the muscle 
fibers in the 0 and z directions are calculated from the 
individual stresses and the fiber orientation dis- 
tributions 

00 
1 

rJ8f = g 
s 

a,(a) cos* u dcc (22) 

-z” 

and 

1 
cZf = 20(, a,(a) sin2 GI da (23) 

where x0 denote the limits of the muscle fiber orien- 
tation. The fiber orientation in the unstressed state is 
assumed to vary linearly from the endocardium to the 
epicardium in the range -60 to +60”. The 
expressions for the collagen stresses in the muscle fiber 
direction are the same as equations (22) and (23). For 
the collagen fibers in the same plane but perpendicular 
to the muscle fibers, the expressions for the stresses 
are similar but the sine and cosine are interchanged. 

The instantaneous wall volume is related to the wall 
deformations through the expression 

where VL,, denotes the wall volume at the unstressed 

reference state, which is defined as the state where the 
LVP, the IMP, the P,,, and the osmotic gradient, An, 
are all zero. 

The requirement that the cavity volume remains 
constant during the contracting and relaxing iso- 
volumic stages, expressed as the ratio between the 
isovolumic and the reference state cavity volumes, is 
given by : 

2 

vL”(Lvp”) 

= V,_,(LVPO = 0) (25) 

where LVP’ is the pressure at the beginning of the 
isovolumic stage. ho, Z?, and V’,, denote wall thick- 
ness, midwall radius and LV volume in the unstressed 
reference state, respectively. 

Finally, geometric compatibility requires that the 
deformation of the muscle and collagen fibers should 
match the overall myocardial deformation. This is 
mathematically expressed by : 

1, = J(i,&os’a +i:sin2cc). (26) 

A similar expression holds for collagen fibers run- 



196 D. ZINEMANAS et al 

SMALL 
ARTLRIES 

r 

APILLARIES 
SMALL LARGE 
VEINS 

VE’WS YClYC 
EPICAGDIAL 

FIG. 5. Electrical analog of the myocardial circulation 

ning parallel to the muscle fibers. For collagen fibers 

perpendicular to muscle fibers, in the (0, z) plane, 
the stretch ratio is given by equation (26), but with 

interchanged sine and cosine. The stretch of the col- 
lagen in the r direction equals the stretch of the wall, 

1,. 
The rate of strain of the muscle fiber is determined 

from the time derivative of equation (26), i.e. 

dir 1 
B = -z = -- 

di, d?+ 

& 
I&Os2cc-++I,sin2~- 

dt dt 
. (27) 

The instantaneous orientation a’ of a given fiber is 
related to its initial orientation CI and the overall myo- 

cardial deformation by : 

a’ = arctan tan (a)+ 
i I 0 

(28) 

Flow model 

Pressure and flows in the vasculature are calculated 
by means of a blood vessel transmural pressure depen- 
dent resistance-capacitance electrical analog mode1 

(Fig. 5). The analysis follows the work of Beyar et al. 

[16], but for simplicity it considers the myocardium 
as one compartment, thus averaging transmural flow 
heterogeneities, and includes an additional capillary 
compartment which is necessary to evaluate the fluid 
and macromolecular transport across the capillary 

wall. Importantly, changes in vascular volumes that 
occur throughout the cycle or due to different working 
conditions are also accounted for in the general solu- 
tion of the integrated model. 

The resistance R and the capacitance C corre- 
sponding to each vessel type in Fig. 5 are functions of 
the vessel transmural pressure difference, (I’“,, - 
IMP), through their dependence on the vessel’s cross 
sectional area (equations (6) and (7)). The cross 
sectional area depicted in Fig. 2 is approximated by 

116,231 

A = A, 
1 

l +zatan[(Ptr-P,)‘q ; Ptr < 0 1 (30) 

where k,, PO, E, and A, are constants. As stated above 

the values of K, and K, in equations (5) and (6) are 
determined by assuming a mean normal flow of 1 
ml ss’-100 grr’ LV and a distribution of resistance 

corresponding to the experimental findings of Chilian 
et al. [24], i.e. 25% pressure drop in the large arteries, 
68% in the microvessels and 7% in the veins. Fol- 

lowing Kresh et al. [17], 20% of the total pressure 
drop is assigned to the capillary part of the mic- 
rovessels. Mean values of the capacitances are 

assumed, following Spaan [15] : 0.0022 ml mmHg- ‘- 
100 gr _’ LV in the large arteries, 0.013 ml mmHg ‘- 
100 gr-’ LV in the small arteries, 0.035 ml mmHg-‘- 

100 gr-’ LV in the capillaries, 0.043 ml mmHg- ‘-100 
gr _ ’ LV in the small veins and 0.045 ml mmHg- ‘- 100 
gr- ’ LV in the large veins. 

The differential equation which must be solved at 
each node i of the electrical analog is given by 

dp:;,, P&-P:,, p;,,-P?. 

dt 
_ ~-2 + S!’ (31) 

R’C’ R!+ ICI 

where PO,, denotes the external pressure, i.e. zero for 
the epicardial arteries and veins and equal to the IMP 

for the intramural vessels. 
The total blood volume can be calculated using the 

expression 

V blood = CL% (32) 

where A, are the cross sectional area of vessels of the 
i class and I, are constants chosen so that the dis- 
tribution of blood volumes agrees with the exper- 
imental value, i.e. the reference total blood volume is 
assumed to be 15 ml 100 gr-‘-LV at the perfusion 
pressure of 100 mmHg. Of the total 15 ml, 3 ml are 
assigned to the large vessels, 7 ml to the medium size 
vessels and 5 ml to the capillary bed. Given the initial 
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blood volume, the total blood volume changes are 
described by the total blood mass balance given by : 

where Qblood is the coronary volumetric flow and the 
subscripts in and out denote the inflow and outflow, 
respectively. 

Fluid transport 
Since the time scale for fluid and macromolecular 

transport is generally much larger than one heartbeat, 
the steady state solution of equations (1 I) and (12) 
can be used in the numerical procedure for the arrested 
and the steady state beating heart. The steady state 
solution of equation (11) is given by : 

where ii,,, denotes the time and space average capil- 
lary pressure during one beat and IMP is the time 
average of the IMP. The total heart lymphatic flow, 
F ,,,+, is given by an empirical linear function of the 
diastolic ZMP [I] : 

F - FEmph [ 1 + O.l2(IMP, - 15)] lymph - (35) 

where the lymphatic flow, P”,,,,,,,,, = 7 [ml h-‘1 at a 
diastolic IMP, = 15 mmHg. This linear relationship 
indicates that there is an increase of 12% in the lym- 
phatic flow for each mmHg increase of the diastolic 
IMP. Although equations (34) and (35) are useful 
for steady state calculations, analysis of transient 
situations requires a rigorous solution of the mass 
balances, equations (11) and (12). Note that equation 
(35) allows us to perform the calculations in the 
absence of a model for the myocardial lymphatic flow. 

The steady state solution of equation (lZ), which 
gives the ratio of the interstitial albumin concentration 
to the (known) capillary concentration and allows us 
to calculate the osmotic contribution in the arrested 
heart and steady state beating heart conditions, is 
given by f25] : 

Clymph -_-- = 

CC,, . 
(36) 

The values of the parameters involved in the model 
(mechanical, flow, fluid and macromolecular trans- 
port) are given in Table 1. 

Analysis of the empty beating and the isouolumic 
contracting hearts 

The LV model presented here can be used for any 
loading conditions by simply connecting it to an 
appropriate systemic circulatory model [ 11,261. Here, 
we focus our attention on two important experimental 
conditions : (I) the empty beating heart (LVP = 0), 

Table 1. Values of the parameters used in the model 

(A) Mechanics 

900, 1300 [gr cmT2] (700, 1000 [mmHg]) 
6 @ cm-‘] 

10 tgr cm-‘] 
10 

1.65 3 F! 
60” 

2.5 [cm1 
1.2 [cm] 

(B) Flow 

kr kc 
lo-” mmHg s-’ 100 gr-’ LV lo5 cm 

cm 100 gr LV 

Large arteries 28000 0.01 
Small arteries 42 000 0.01 
Capillaries 7000 0.022 
Small veins 230 0.03 
Large veins 70 0.09 

(C) Fluid transport 

r, lo-* [cm s-’ mmHg-‘1 
” 0.87 
PW 5 x lo-* [cm s-‘1 

%:m,, 
1.35 x lo* km21 
1.93 x 10m3 [ml s-‘1 

and (2) the isovolumic contracting heart. Both con- 
ditions are studied under constant coronary perfusion 
pressures ; this simplifies the theoretical analysis and 
allows comparison with very well defined and con- 
trohed experimental conditions [2,27-291. These situ- 
ations are particularly interesting since they represent 
two extreme cases of the coupling between muscle 
mechanics and flow ; the former corresponds to a zero 
afterload situation, where the effect of cavity pressure 
on the circulation is zero and muscle deformation is 
maximal ; the latter corresponds to an infinite after- 
load where the effect of the cavity pressure on the flow 
is maximal and muscle deformations are small. To 
model the empty beating heart, we impose LVP = 0 
in the force balances, equations (13)-( 151, and discard 
the isovolumic constrain, equation (25). 

The results can be compared to the ex~rimental 
data of Krams et al. f27, 281, who studied these two 
cases experimentally. Kresh et al. [2, 291 have studied 
the effect of coronary perfusion pressure and con- 
tractile conditions on the coronary blood flow and the 
IMP in the empty beating and arrested hearts. 

numerical procedure 
The numerical algorithm addresses, interactively, 

the force balances, equations (13)-( 15), the flow equa- 
tions, equation (31), and the fluid and mass transport 
balances, equations (11) and (12), given the geo- 
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metrical and boundary conditions, equations (24) and 
(25) and using the related constitutive equations and 
the quantitative definitions of the various parameters 
involved. 

Arrested heart. The steady flow, fluid and mass 
transport are first calculated by solving simul- 

taneously, using an iterative method, the steady state 
flow and fluid and mass transport equations (i.e. equa- 
tions (31) with the vascular and intramyocardial pres- 

sure time derivatives equal to zero), and the mass 

balances (equations (34) and (36)). The solution of 
this system yields the values of the IMP and the flow 
variables. Given the IMP value, the force balances 
(equations (13))(15)) are solved, employing a New- 

ton-Raphson method to obtain the total wall volume 

change and fiber deformations. Once the total wall 

volume is known and the total blood volume is evalu- 
ated from equation (32) the interstitial volume is 
found from equation (5) and the given volume of 
fibers. 

Beating heart. The variables obtained in the arrested 

heart conditions are used as initial conditions for the 
subsequent beating heart calculations which are 
initiated by starting the muscle activation wave [14]. 

Steady state beating heart conditions are obtained 
by simultaneous solution of the quasi-steady force 

balances (equations (13))( 15)) the geometrical con- 

strains for the wall (equation (24)) and the cavity 
(equation (25)) volumes, and the blood flow (equa- 
tions (31)), throughout the cardiac cycle. This pro- 
vides the wall deformation dynamics (I+,, ,I,, A,), the 
IMP, the LVP and the blood flow and pressures. 

The instantaneous total blood volume is updated by 
integrating equation (33) using a simple Newton 
method, and this value is used to update the total wall 
volume (equation (5)) during the cardiac cycle. 

Since the time constants for fluid and mass trans- 
port, which range from seconds to hours [30], are 
larger than a single beat, the interstitial fluid volume 

is assumed constant during a single cardiac cycle, but 
is updated on a beat to beat basis. Thus, integration of 
equations (11) and (12) follows the interstitial volume 

and macromolecular concentration dynamics, and is 
performed in time increments equal to the cardiac 

cycle. The time dependent equation (5) 

V~,II(t) = VsIOO,(t)+ v~~,!(n+ Vlih (37) 

then substitutes the generally assumed myocardial in- 
compressibility condition. Note that T denotes a beat 
to beat (or larger) time scale. The effects of blood 
volume changes during a heart beat or the interstitial 
fluid changes on larger time scales, can thus be evalu- 
ated. Blood flow and volume changes are calculated 
using the flow equations (31) and the total blood mass 
balance, equation (33) with the end-diastolic or initial 
blood volume calculated from equation (32). 

The algorithm for calculating the steady state beat- 
ing heart conditions is in fact the transient procedure 
to calculate the steady state solution starting from the 
arrested heart conditions. This transient algorithm 

70 

0 
EMPTY HEART 
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FIG. 6. Mean myocardial flow (A) and mean and end-dias- 
tolic IMP (B) vs coronary perfusion pressure in the arrested 

and the beating heart. 

may, however, be time consuming since the mass tran- 

sients are longer than the flow transients. An alter- 
native way to accelerate the numerical convergence 
from the arrested to the steady state solution is to use 
a pseudo-transient solution by imposing, at the end 
of each cardiac cycle, the steady state mass balances, 
equations (34) and (36), instead of solving the tran- 

sient balances, equations (11) and (12). This approach 
allows us to estimate the changes in the end-diastolic 
IMP directly instead of calculating the IMP changes 

that follow from the interstitial volume dynamics at 
the end of each cardiac cycle. As expected, both pro- 
cedures give the same steady state solution. However, 
the first procedure is essential to calculate transient 
responses, and the second pseudo-transient procedure 
is useful only to calculate steady state conditions. 

RESULTS 

The mean coronary flow rate and the mean and 
end-diastolic IMPS are presented in Figs. 6(A) and 
(B) as functions of the coronary pressure, P,,,, in the 
empty (LVP = 0) arrested and beating hearts. The 
lymphatic flow has been assumed to follow equation 
(35) in both these situations, with equilibration of 
fluid transport at each pressure. As seen, the flow rate 
increases with the perfusion pressure and the flow rate 
as well as its slope is larger in the arrested than in the 
beating heart. Correspondingly, the IMP (Fig. 6(B)) 
increases with the perfusion pressure and is higher in 
the beating than in the arrested heart thus explaining 
the larger flow rates in the arrested heart. These results 
are consistent with the experimental data of Kresh et 

al. [29] and Baird et al. [31] for the empty beating 
heart. It is interesting to note to that the IMP in the 
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FIG. 7. Mean myocardial flow (A) and mean and end-dias- 
tolic IMP (B) vs coronary perfusion pressure in the arrested 
and the beating heart without accounting for fluid and mass 

transport effects. 

arrested heart is higher than the IMP, in the beating 
heart. This is due to the different fluid and blood 
content in the myocardial wall in these two cases, i.e. 
the interstitial and total wall volumes are larger in the 
arrested heart than in the beating heart due to the 
smaller mean IMP in the former case. The predicted 
end-diastolic IMP, value of 15 mmHg at a perfusion 
pressure of 100 mmHg is in accordance with the 
reported experimental data of Laine and Granger [ 11. 

For. comparison, the above calculations were 
repeated for two additional cases : (1) no fluid trans- 
port and coronary effects, i.e. the vascular and inter- 
stitial volumes are constant, and (2) only coronary 
effects, i.e. changes in vascular volume due to changes 
in the perfusion pressure, are accounted for but the 
interstitial volume is constant. The results, depicted 
in Fig. 7(A), show that when fluid and mass transport 
as well as coronary effects are neglected the coronary 
pressure does not affect the LV mechanics since 
changes in the LV wall volume due to changes in 
vascular or interstitial volumes are not accounted for. 
Furthermore, the values of the arrested and end-dias- 
tolic IMPS are unknown and must be independently 
assumed. When the vascular volume changes with the 
change in the perfusion pressure are accounted for 
(Fig. 7(B)), the changes in the IMP with the perfusion 
pressure can be predicted. The results in Fig. 7 were 
obtained assuming that IMP = 15 mmHg at a per- 
fusion pressure of 100 mmHg and that the combined 
interstitial and fiber volume is 85 ml 100 gr-‘-LV. The 
reference point is depicted in Fig. 7(B) by a dot. Note 
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FIG. 8. Dynamics of the coronary flow (A) and the IMP (B) 
in the empty beating heart at different perfusion pressures. 

PC,, = 80 mmHg, PC,, = 120 mmHg. 

that the interstitial fluid volume which normally 
changes with the perfusion pressure, is kept constant 
in these particular calculations, and that the diastolic 
and systolic IMP dependence on the perfusion pres- 
sure is weaker than in the case where both coronary 
flow and mass transport effects are considered (Fig. 

6(B)). 
The correspondence of the flow rate in the epicard- 

ial arteries and the IMP at steady state conditions and 
at two different perfusion pressures is shown in Figs. 
8(A) and (B). Consistent with Krams et al. [28] the 
oscillatory flow amplitude increases as the perfusion 
pressure increases. 

The oscillatory flow amplitude (OFA) in the empty 
beating heart is plotted in Fig. 9 as a function of the 
perfusion pressure at two different maximum sar- 
comere stresses, q, = 700 and 1000 mmHg, repre- 
senting two different contractility states. Consistent 
with experimental data [2, 281, these results show an 
increase of the OFA with an increase of the perfusion 
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FIG. 9. Oscillatory flow amplitude (OFA) vs perfusion pres- 
sure at two different maximum sarcomere stresses, q, = 700 

and 1000 mmHg. 
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FIG. 10. Dynamics of the coronary flow in the isovolumic 
contracting heart at a perfusion pressure of 100 mmHg and 
at two different diastolic pressures. LVP” = 0 and 15 mmHg. 

pressure and with increased contractility. The increase 

of the OFA with perfusion pressure may be explained 
by an increase in the amplitude of the IMP oscillation 
(Fig. 8(B)) but may also include a contribution from 
a change in the distribution of the intramyocardial 
resistances. The lower values of the OFA at reduced 
values of the maximal muscle stress reflect the lower 
values and oscillatory amplitude of the IMP at a lower 
contractility. 

The flow waveforms in the isovolumic contracting 
heart are shown in Fig. 10 for a constant perfusion 
pressure of 100 mmHg at two different end-diastolic 
volumes, LVp = 0 and 15 mmHg. It is noted that 
the flow waveforms in this case are qualitatively and 
quantitatively similar to those of the empty beating 
heart presented in Fig. 8(A), although the LV cavity 
pressure is entirely different. This fact can be explained 
by the similar ZMP waveforms obtained in both cases 
despite the great difference in the ventricular load 
and deformation dynamics. Another feature of Fig. 
10 is the change in OFA with the preload. By changing 
the preload, Krams et al. [28] show that the OFA is 
practically independent of the developed pressure (i.e. 
systolic minus diastolic L VP) in the isovolumic fehne 
heart. However, Abel et al. [32], using canine hearts, 
show that increasing the peak LYP by controlling the 
afterload causes an increase in the OFA. The cor- 
responding calculated LVP and IMP in an isovolumic 
contraction with L VP = 0 are shown in Fig. 11. The 

I20 

2 
E 60 

a 

FIG. I I 

I! I 
I 

0 
” OS 1.0 

Time k.ec) 

Dynamics of the IMP and LW’ in the isovolumic 
contracting heart at a diastolic L VP = 0. 

J 

50 100 $50 

P COR (mm&d 

FIG. 12. Mean coronary flow (A) and oscillatory flow ampli- 
tude (OFA) (B) vs perfusion pressure in the empty beating 
and in the isovolumic contracting heart at two different pre- 

loads. LI’P’ = 0 and I5 mmHg. 

calculated LVP waveform corresponds to the exper- 
imental findings of Krams et al. [ZS]. Note that while 
during diastole LVP = 0 the corresponding IMP is 
not zero. 

A comparison between the isovolumic and the 
empty beating hearts in terms of the effects of the 
perfusion pressure and the diastolic cavity pressure 
on the mean coronary flow and the OFA is presented 
in Figs. 12(A) and (B). The mean coronary flow- 
pressure relationship is quite similar for the two cases 
(Fig. 12(A)), showing a small decrease in the mean 
flow with an increase in the preload and the cor- 
responding increase in the peak systolic LV pressure 
which is consistent with the data of Abel et al. [32]. 
Reasonably similar OFA values in the two hearts are 
in agreement with the experimental data of Krams et 
al. [28], suggesting a small direct effect of the LVP on 
the OFA. As mentioned in connection with Fig. 10, 
the model predicts a slight increase of the OFA with 
increasing preload, which is larger than the results 
reported by Krams et al. [28]. Abel et ai. [32], however. 
show that the OFA increases with the increase in peak 
systolic pressure. 

All the results presented here correspond to the 
normal values of the vasculature tone without the 
autoregulatory mechanisms. Similar calculations for 
maximum vasodilation do not show a qualitative 
difference from the normal vascular tone without 
autoregulation. However at the different resistances 
and capacitances of the blood vessels under maximum 
vasodilation, the flow increases about 400% and the 
OFA increases by a factor of 2. The IMP dependence 
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FIG. 13. Mean IMP vs coronary perfusion pressure in the 
arrested and the beating heart with maximal vasodilated 

state. 

on the perfusion pressure for the vasodilated case is 
shown together with the experimental empty beating 
heart data of Kresh et al. [29] in Fig. 13. 

The predicted OFA with maximal vasodilation is 
compared with the data of Krams et af. [28], and 
shown in Fig. 14. Considering the scatter of the data 
and that the fact that no parameter optimization was 
performed but the values (obtained mainly for dogs 
and not cats) reported in the literature were used this 
comparison is quite satisfactory. 

Kresh [2] measured the IMP and the coronary flow 
in a vented (empty) beating isolated heart, which was 
perfused at a constant pressure by a Krebs-Henseleit 
solution. The heart was then transiently arrested by 
an infusion of pentobarbital. The experiment suggests 
that the time scale of the fluid transport and the wash- 
out of the pentobarbital, i.e. the mechanical effect, are 
of the same order of magnitude. The model results are 
compared in Fig. 15 with the experimental results. In 
simulating this experiment we have assumed that the 
heart muscle is a continuously stirred tank reactor 
(CSTR) so that the bolus of pentobarbital rapidly 
increases the ‘reactor’s’ concentration up to a 
maximum value, followed by an exponential fall of 
the concentration. The effect of the pentobarbital on 
the sarcomere force, go, is assumed to be inversely 
proportional to its concentration in the myocardium. 

50 too t50 

P ear (mmHg) 

FIG. 14. Oscillatory flow amplitude (OFA) vs perfusion pres- 
sure in the empty beating and in the isovolumic contracting 
heart at two different preloads L VP' = 0 and 15 mmHg and 

maximal vasodilated state. 

The sarcomere force is assumed to be zero at the 
maximum concentration. Once the effect of pento- 
barbital is over, the flow oscillations resume and the 
system returns to its previous steady state. Inspection 
of Fig. 15 shows that the analytical simulation closely 
follows the trends of the experimental data. 

Myocardial edema is another example highlighting 
the importance of the fluid and mass transport in the 
integrated model in cases of myocardial pathology. 
An edematous state is simulated here by reducing 
the lymphatic flow (equation (35)). The trend of the 
results obtained by keeping all other parameters con- 
stant, but reducing the lymphatic flow to a third of its 
normal value, i.e. F,,,,,_,,, = 2.3 ml h-‘, reduces the 
normal mean myocardial flow and increases the mean 
IMP and the OFA; these differences increase mon- 
otonically with the increase of the perfusion pressure. 
Quantitatively, a reduction of 12% in the mean flow 
and an increase of 15% in the IMP and 17% in the 
OFA are predicted for reduced lymphatic flow in the 
empty beating heart, at a perfusion pressure of 100 
mmHg. The total wall volume increases by 4% and 
the interstitial volume by 37%. The blockage of the 
lymphatic flow increases the mean IMP due to the 
increase of myocardial fluid content and thus induces 
the decrease of the mean myocardial flow. Obviously, 
keeping all but the lymphatic parameters constant 
may not be realistic since, for example, changes in 
flow may cause changes in sarcomere activity, and the 
capillary wall hydraulic conductivity may also change, 
thus enhancing the edema phenomena. However, the 
general trend of decreased flow and increased IMP 

will most likely prevail. Evidently, a decrease in the 
myocardial blood flow and an increase in the inter- 
stitial fluid will reduce the metabolic supply to the 
muscle, and consequently will directly affect the sar- 
comere contractile activity. 

The effect of the perfusion pressure on LV com- 
pliance, d V/dP, for the isovolumic contracting heart 
is presented in Table 2. A decrease in diastolic ven- 
tricular compliance is predicted for increasing per- 
fusion pressure associated with an increase in the myo- 
cardial fluid content and total volume. The values 
shown in Table 2 agree very well with the experimental 
data of Fukui et al. [3] showing C,, values of 1.25 
and 0.66 ml mmHg- ’ at perfusion pressures of 70 and 
150 mmHg, respectively. 

The total blood volume changes during a single 
heart beat are calculated by the model to be of order 
of 0.5 ml 100 gr-‘-LV, which corresponds to ~0.5% 
of the total wall volume or ~3% of the total blood 
volume. The corresponding effects on the overall LV 
variables, such as the blood flow rate or the OFA, 
are found to be of the same order of magnitude, i.e. 
~0.5%. These hardly differ from the case when the 
blood volume is assumed constant throughout the 
cardiac cycle. Total blood volume changes may be 
more important in transient cases or during changing 
working conditions, and in larger time scales than the 
one cardiac cycle. 
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FIG. 15. IMP and coronary flow in the transient arrest of an empty heart. (A) Experimental data of Kresh 
[2] (reproduced from ref. [2], with permission). (9) Model simulation. 

DISCUSSION 

The integrated model. 

The major importance of the integrated LV model 
is that it allows us to address the following aspects of 

the cardiac system. 

(1) The interstitial fluid mass balance within the 
LV wall. Previous flow-mechanical models [5, 61 do 

not account for this fluid balance and therefore cannot 

evaluate the myocardial interstitial fluid content at 
different loading and contractile conditions. 

(2) Effects of the circulation on the LV mechanics. 

Table 2. Effect of perfusion pressure on end-diastolic LV 
compliance 

P,, (mmHg) c 

60 1.62 
100 1.25 
150 0.89 

The coronary flow affects the LV mechanics through : 
(I) the vascular volume and (2) fluid flow across the 
capillary wall. The interstitial fluid mass balance pro- 

vides an additional linkage between the myocardial 
blood flow and mechanics to describe the LV per- 
formance. These effects could not be accounted for in 
previous models. 

(3) Wall compressibility. The generally used LV 

wall incompressibility condition, is substituted here 
by equation (5) which provides the LV wall volume 

in terms of its components. This approach allows us 
to evaluate the components of the wall volume, and 
their dynamics, at the prevailing conditions. The LV 
performance is thus uniquely determined, allowing us 
to calculate different steady state (e.g. arrested and 
beating hearts) and transient conditions and study the 
effects of blood volume changes during the heart beat. 
Furthermore, it enables us to study the complex effects 
of pathologies associated with disturbances in the 
fluid transport, such as edema, on myocardial mech- 
anics and coronary flow. 

(4) The LV global performance (mechanical, blood 

flow and fluid and mass transport) is directly related 
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to the myocardial contractile activity, the myocardial 
structure and the boundary and loading constrains. 
Thus, the LV variables are related directly to the myo- 
cardial activity and not to dependent variables, such 
as the ZMP or the LVP, which are passive results of 
the muscle activity. This relation will be of major 
relevance in investigating the effect of the myocardial 
metabolic supply, through the circulation, on the LV 
performance. 

Diastolic IMP and interstitial Juid content. Fluid 

transport, in combination with the mechanics and the 
coronary flow, has a major effect in determining the 
level of the diastolic IMP. This effect is demonstrated 
experimentally [2] (Fig. 15(A)), during the period of 
total and partial myocardial arrest, where the decrease 
in the mean IMP following the pentobarbital infusion 
allows for the transport of fluid into the interstitial 

space and causes the elevation of the diastolic IMP 
from the beating heart value towards the arrested 
heart value. The experiment demonstrates that as the 
heart is arrested, the IMP initially, equals the same 

diastolic IMP as in the beating heart which cor- 
responds to the fluid content and total wall volume at 
that moment. Then, as the transcapillary fluid flux 
increases and the lymphatic flow decreases due to the 
reduction of the IMP, the interstitial volume starts to 
increase and the IMP starts to increase from the end 

diastolic beating heart value to the arrested heart 
value while the muscle is still almost totally arrested 

(see also Fig. 6(B)). As the myocardium slowly starts 
beating again, the diastolic IMP value decreases and 
the peak systolic value increases back to their values 
in the normal beating conditions. This is due to the 
overall increase in the IMP which increases the lym- 
phatic outflow and lowers the transcapillary fluid flux, 
thus decreasing the interstitial fluid content, and 
affects the blood content too. The corresponding flow 
transients follow the trends of the IMP dynamics. 
The flow immediately after arrest remains close to its 
diastolic value and then decreases to the arrested heart 
value as the IMP increases. As the muscle activity 
resumes the flow and IMP return to their beating 
heart values. 

Evidently, changes in the diastolic IMP value may 
modify the initial sarcomere length and hence affect 
the systolic stresses and IMP. This is observed in Fig. 
6(B) where an increase in coronary perfusion pressure 
causes an increase in diastolic IMP and a cor- 
responding increase in the systolic IMP. 

Autoregulation. Coronary autoregulation is not 
accounted for in the present model. However, it has 
been suggested that an increase in IMP due to an 

increase the in perfusion pressure may affect the cir- 
culation by externally compressing the blood vessels. 
Although this postulated ‘Tissue Pressure’ [33] mech- 
anical autoregulatory mechanism may contribute to 
the overall response of the coronary flow to perfusion 
pressure, it does not provide a viable explanation of 
the flow autoregulatory phenomena. The results 
showr here indicate that the flow rate increases as the 

perfusion pressure is elevated even though the IMP 
increases, suggesting that flow autoregulation is not a 
purely mechanical phenomena. 

Coronary flow> oscillations. The combined effects 
of myocardial mechanics, blood flow and fluid trans- 
port are also manifested in the oscillatory flow ampli- 
tude (OFA). For example, variations in the OFA as a 
function of the perfusion pressure can be explained in 
terms of two related factors : (1) the dependence of 
the resistance and capacitance values on the local 
vessel transmural pressure and (2) the variations in 

the IMP due to changes in circulatory conditions and 
a shift of fluids into the extravascular space. 

Coronary elastance. Krams et al. [27, 281 have 

explained the effects of contractility, coronary per- 
fusion pressure and LV pressure on the OFA in terms 
of an elastance concept, i.e. the resistances and capaci- 

tances of the myocardial-coronary system are time 
varying and may be represented by a time dependent 
coronary elastance, CT(t). According to Kresh [2], 

Krams et al.‘s [28] coronary elastance is similar to the 
intramyocardial pump concept. When applied to the 
coronary flow the integrated model is, in fact, Krams 
et al’s [27, 281 elastance or the intramyocdrdial pump 

concepts expressed in a structural and quantitative 
form. Thus, rather than being phenomenologically 
described by a time dependent ‘coronary elastance’ or 

an intramyocardial pump, the coronary flow here is 
directly related to the myocardial structure and 
activity. 

Contractility. Myocardial contractility is the prin- 
cipal factor in determining the global LV perform- 

ance. This is clearly reflected by the major changes in 
myocardial mechanics, coronary flow and fluid and 
mass transport that follow changes in the muscle con- 
tractility condition as shown in Kresh’s experiment 

121. 
The effect of myocardial contractility on the cor- 

onary flow dynamics is manifested by an increase of 
the OFA with increasing contractility (Fig. 8). The 
effect of muscle contractility on flow dynamics is dem- 

onstrated in Kresh’s transient contractile dysfunction 
experiment [2]. A reduction in muscle force reduced 
the systolic IMP and thus caused a transient decrease 
in coronary flow oscillations. Fluid accumulation in 
the myocardium due to the reduced mean IMP causes 
an increase in diastolic IMP and a concomitant 
decrease in mean coronary flow. The experimental 
results [2] and accompanying simulation emphasize 
the fact that the LV performance, expressed in terms 
of LV pressures (zero in this case) and volumes, IMP 
and fluid shift dynamics as well as coronary flow 

dynamics, are derived from the primary active force 
development in the sarcomere. 

Myocardial edema. The variations in the flow and 
mechanical variables during myocardial edema simu- 
lated here by a reduction of the lymphatic outflow is 
another feature which demonstrates the importance 
of including fluid transport effects in an integrated LV 
model. Shifts in the myocardial fluid balance associ- 
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atcd with the development in edema may exist in 
numerous pathological and experimental conditions ; 
thcsc may be due to abnormal lymphatic drainage, 
abnormal capillary permeability or abnormalities in 
the contractile function. Further theoretical exper- 
imental studies arc needed to clarify the importance of 

the different pathophysiological mechanisms affecting 
the fluid balance and their relative importance. 

Limitations. The study is obviously limited by the 
various simplifying assumptions used in the proposed 

model. Obviously, this approach neglects transmural 
heterogeneities. Yet it can still yield important in- 
sights based on the wall-averaged complex interactions 
between mechanics. blood flow and across capillary 
transport. Future studies with an integrated model 
involving transmural distribution across the wall 

should yield further insight. 
A more realistic wall geometry will obviously lead 

to a more accurate simulation of reality. However, the 
additional complexity of a realistic geometry of the 

LV is presently unwarranted. 
Myocardial transport phenomena are limited here 

to water and albumin. Other macromolecules arc 
obviously involved in the osmotic processes and 

should eventually be studied. Transport phenomena 
related to the metabolic processes associated with 
energy consumption and the flow autoregulatory 

mechanisms should also be considered in future 
studies. 

CONCLUSIONS 

The model integrates myocardial mechanics, cor- 
onary flow and intramyocardial fluid and mass trans- 
port. The main strength of the model used lies in its 
ability to decipher some of the complex interactions 
between myocardial mechanics, coronary flow and 

fluid and mass transport and to predict the effect of 
coronary perfusicn pressure on the myocardial mech- 
anical conditions and the interstitial fluid accumu- 
lation under various experimental and patho- 
physiological conditions. The effect of perfusion 
pressure on LV compliance is also predicted. The 
analysis of the arrested and the beating hearts under 
isovolumic and zero isobaric conditions, transient 
changes in myocardial force and the simulation of 
edema attest to the importance of adding fluid and 
mass transport considerations into LV modeling and 

of assuming a LV integrated approach. 
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